Naruto hadir di blog ini

Blog ini akan memposting tentang episode naruto kecil, naruto shippuden, naruto the movie, OST naruto, dll.

Penggemar Android wajib baca blog ini

di blog ini akan dishare tentang Android, aplikasinya, tutorial dll.

Semua tentang komputer dan laptop ada disini

dapatkan kabar terbaru tentang perkembangan teknologi pada komputer.

Hardware, Software dan Sistem Operasi

dapatkan kabar terbaru dari Perkembangan Hardware, Software, dan SO.

Materi Kuliah Teknik Informatika

saya akan selalu share tentang materi perkuliahan Teknik Informatika untuk membantu sobat-sobat semua , dan saling share ilmu.

Saturday 30 April 2011

Konsentrasi Larutan


Konsetrasi larutan merupakan cara untuk menyatakan hubungan kuantitatif antara zat terlarut dan pelarut.
  • Konsentrasi : jumlah zat tiap satuan volum (besaran intensif)
  • Larutan encer : jumlah zat terlarut sangat sedikit
  • Larutan pekat : jumlah zat terlarut sangat banyak
  • Cara menyatakan konsentrasi: molar, molal, persen, fraksi mol, bagian per sejuta (ppm), dll

Molaritas (M)

Molaritas adalah jumlah mol zat terlarut dalam satu liter larutan. Rumus Molaritas adalah :
rm17
Contoh :
Berapakah molaritas 0.4 gram NaOH (Mr = 40) dalam 250 mL larutan ?
Jawab :
rm27

Normalitas (N)

Normalitas merupakan jumlah mol-ekivalen zat terlarut per liter larutan. Terdapat hubungan antara Normalitas dengan Molaritas, yaitu :
rm35
Mol-ekivalen :
  • Asam/basa: jumlah mol proton/OH- yang diperlukan untuk menetralisir suatu asam / basa.
Contoh :
1 mol Ca(OH)2 akan dinetralisir oleh 2 mol proton;
1 mol Ca(OH)2 setara dengan 1 mol-ekivalen; Ca(OH)2 1M = Ca(OH)2 2N
  • Redoks : jumlah mol elektron yang dibutuhkan untuk mengoksidasi atau mereduksi suatu unsur
Contoh :
1 mol Fe+3 membutuhkan 3 mol elektron untuk menjadi Fe;
1 mol Fe+3 setara dengan 3 mol-ekivalen;
Fe+3 1 M = Fe+3 3 N atau Fe2O3 6 N

Molalitas (m)

Molalitas adalah jumlah mol zat terlarut dalam 1000 gram pelarut.
Rumus Molalitas adalah :
rm45
Contoh :
Berapa molalitas 4 gram NaOH (Mr=40) dalam 500 gram air?
Jawab :
molalitas NaOH
= (4/40)/500 g air
= (0.1 x 2 mol)/1000 g air
= 0,2 m

Fraksi Mol (X)

Fraksi mol adalah perbandingan antara jumlah mol suatu komponen dengan jumlah total seluruh komponen dalam satu larutan. Fraksi mol total selalu satu. Konsentrasi dalam bentuk ini tidak mempunyai satuan karena merupakan perbandingan.
Contoh :
Suatu larutan terdiri dari 2 mol zat A, 3 mol zat B, dan 5 mol zat C. Hitung fraksi mol masing-masing zat !
Jawab :
XA = 2 / (2+3+5) = 0.2
XB = 3 / (2+3+5) = 0.3
XC = 5 / (2+3+5) = 0.5
XA + XB + XC = 1

Persen Berat (% w/w)

Persen berat menyatakan jumlah gram berat zat terlarut dalam 100 gram larutan.
Contoh :
Larutan gula 5%, berarti dalam 100 gram larutan gula terdapat :
  • (5/100) x 100 gram gula = 5 gram gula
  • (100 – 5) gram air= 95 gram air

Bagian per juta (part per million, ppm)

ppm = massa komponen larutan (g) per 1 juta g larutan. Untuk pelarut air : 1 ppm setara dengan 1 mg/liter.

sumber :
http://www.chem-is-try.org/materi_kimia/kimia-smk/kelas_x/konsentrasi-larutan-2/

Elektrokimia


Pengertian Elektrokimia
ilmu yang mempelajari aspek elektronik dari reaksi kimia. Elemen yang digunakan dalam reaksi elektrokimia dikarakterisasikan dengan banyaknya elektron yang dimiliki. Sel Elektrokimia adalah sel yang disusun untuk menjadikan suatu reaksi redoks menghasilkan energy listrik yang selanjutnya diubah menjadi energy kimia atau sebaliknya .
Macam-macam Eletrokimia :
Elektrokimia dibagi menjadi dua jenis :
Sel Volta atau Sel Galvani
Luigi Galvani (1780) dan Alexandro Volta (1800) menemukan adanya muatan listrik dalam suatu reaksi kimia Reaksi kimia ini hanya terjadi pada reaksi redoks dan rangkaian reaksi ini disebut Sel Volta.
Sel Volta atau Galvani adalah Energi yang dihasilkan oleh reaksi kimia diubah menjadi energy listrik.
Contoh : batu batrei dan akki
Katode : reduksi kutub (+)
Anode : Oksidasi kutub (-)
Sel Elektrolisis
Elektrolisis adalah peristiwa penguraian zat elektrolit oleh arus listrik searah.Elektroda positif (+) yang disebut juga anoda sedangkan elektroda negative (-) disebut katoda.
a. Elektrolisis terhadap lelehan/cairan/leburan
Sel elektrolisis tidak mengandung pelarut (air)
Katode : reduksi kation
Anode   : oksidasi anion
b. Elektrolisis terhadap larutan elektrolit dalam air
- Elektroda inert ( tidak aktif )
Katode = Golongan IA dan IIA yang dielektrolisis air
Anode  = Mengandung O,yang dioksidasi air
-  Elektroda Aktip ( Cu,Ag,Fe,Ni,dll)
Katode = Golongan IA dan IIA yang dielektrolisis air
Anode  = Elektrode Aktif tersebut.
Kegunaan Sel Elektrolisis
Beberapa kegunaan sel alektrolisis adalah :
  1. Penyepuhan adalah proses pelapisan suatu logam dengan lgam lain.logam yang akan dilapisi digunakan sebagai katoda,sedangkan logam pelapis disebut anoda.
  2. Pembuatan beberapa senyawa.
  3. Untuk  menghitung konsentrasi suatu logam dalam larutan.
Prinsip Perhitungan Elektrolisis
1. Hukum Faraday I “Massa zat yang terbentuk pada masing-masing elektroda sebanding dengan kuat arus/arus listrik yang mengalir pada elektrolisis tersebut”.
Rumus:
m = e . i . t / 96.500
q = i . t maka G = I . t
m = massa zat yang dihasilkan (gram)
e = berat ekivalen = Ar/ Valens i= Mr/Valensi
i = kuat arus listrik (amper)
t = waktu (detik)
q = muatan listrik (coulomb)
2.   Hukum Faraday II
“Massa zat yang dibebaskan pada elektrolisis (G) berbanding lurus dengan massa ekivalen zat itu ( ME )
G = ME
Penggabungan hukum Faraday I dan II
G = k . i . t . ME
Jika k =   , maka    G =  .ME
Korosi
Korosi merupakan reaksi kimia antara logam dengan zat lain yang bias menghasilkan senyawa-senyawa yang tidak diinginkan.Karat merupakan hasil dari proses dari korosi yaitu teroksidasinya suatu logam,bsi yang terkorosi membentuk karat dengan umus : Fe2O3XH2O.
Proses perkaratan termasuk proses elektrokimia dimana logam besi ( Fe ) yang troksidasi bertindak sebagai anoda dan oksigen yang terlarut dalam air pada permukaan besi bertindak sebagai anoda.
Pembentukan karat :
Anoda : Fe                           Fe2+ + 2e
Katoda : O2 + 2 H2O + 4e                     4 OH
Fe2+ akan teroksidasi lagi membentuk Fe3+ atau Fe3O3.Sedangkan ion OH- akan bergabung dengan elektrolit yang ada didalam atau dengan ion H+ dari terlarutnya oksidasi asam (SO2,NO2) dari hasil perubahan dengan air hujan.
Karat bersifat katalis untuk proses perkaratan berikutnya yang disebut Autokatalis.
Pencegahan proses perkaratan :
-         Pelepisan dengan cat atau logam lain yang sukar teroksidasi
-         Proses katoda ( proteksi katodik )

sumber :

Larutan Elektrolit dan Non-Elektrolit

1. LARUTAN

Larutan adalah campuran yang bersifat homogen atau sama. Jika anda melarutkan 2 sendok makan gula putih (pasir) ke dalam segelas air, maka Anda telah mendapatkan larutan gula. Terdapat 2 larutan yaitu; larutan Elektrolit dan Larutan Non-Elektrolit.
1.1 Larutan Elektrolit
Larutan elektrolit merupakan larutan yang dibentuk dari zat elektrolit. Sedangkan zat elektrolit itu sendiri merupakan zat-zat yang di dalam air terurai membentuk ion-ionnya. Zat elektrolit yang terurai sempurna di dalam air disebut Elektrolit Kuat dan larutan yang dibentuknya disebut Larutan Elektrolit Kuat. Zat elektrolit yang hanya terurai sebagian membentuk ion-ionnya di dalam air disebut Elektrolit Lemah dan larutan yang dibentuknya disebut Larutan Elektrolit Lemah.
1.2 Larutan Non-Elektrolit
Larutan non elektrolit merupakan larutan yang dibentuk dari zat non elektrolit. Sedangkan zat non elektrolit itu sendiri merupakan zat-zat yang di dalam air tidak terurai dalam bentuk ion-ionnya, tetapi terurai dalam bentuk molekuler.
1.3 Membedakan Larutan Elektrolit dan Larutan Non Elektrolit
Larutan elektolit dan non elektrolit dapat dibedakan dengan jelas dari sifatnya yaitu penghantaran Listrik.
a). Larutan elektrolit dapat menghantarkan listrik.
Hal ini untuk pertama kalinya diterangkan oleh Svante August Arrhenius(1859-1927), seorang ilmuwan dari Swedia. Arrhenius menemukan bahwa zat elektrolit dalam air akan terurai menjadi partikel-partikel berupa atom atau gugus atom yang bermuatan listrik. Karena secara total larutan tidak bermuatan, maka jumlah muatan positif dalam larutan harus sama dengan muatan negatif.
Atom atau gugus atom yang bermuatan listrik itu dinamai ion. Ion yang bemuatan positif disebut kation, sedangkan ion yang bermuatan negatif disebut anion. Pembuktian sifat larutan elektrolit yang dapat menghantarkan listrik ini dapat diperlihatkan melalui eksperimen. Zat-zat yang tergolong elektrolit yaitu asam, basa, dan garam.
Contoh larutan elektrolit kuat : HCl, HBr, HI, HNO3, dan lain-lain
Contoh larutan elektrolit lemah :CH3COOH, Al(OH)3 dan Na2CO3
b). Larutan non elektrolit tidak dapat menghantarkan listrik.
Adapun larutan non elektrolit terdiri atas zat-zat non elektrolit yang tidak dilarutkan ke dalam air tidak terurai menjadi ion ( tidak terionisasi ). Dalam larutan, mereka tetap berupa molekul yang tidak bermuatan listrik. Itulah sebabnya larutan non elektrolit tidak dapat menghantarkan listrik. Pembuktian sifat larutan non elektrolit yang tidak dapat menghantarkan listrik ini dapat diperlihatkan melalui eksperimen.
Contoh larutan non elektrolit : Larutan Gula (C12H22O11), Etanol (C2H5OH), Urea (CO(NH)2), Glukosa (C6H12O6), dan lain-lain
1.4 Kekuatan Elektrolit
Kekuatan suatu elektrolit ditandai dengan suatu besaran yang disebut derajat ionisasi (α)
Keterangan :
Elektrolit kuat memiliki harga α = 1, sebab semua zat yang dilarutkan terurai menjadi ion.
Elektrolit lemah memiliki harga α<1, sebab hanya sebagian yang terurai menjadi ion.
Adapun non elektrolit memiliki harga α = 0, sebab tidak ada yang terurai menjadi ion.
Elektrolit kuat : α = 1(terionisasi sempurna)
Elektrolit lemah : 0 < α < 1 (terionisasi sebagian)
Non Elektrolit : α = 0 (tidak terionisasi)
1.5 Reaksi Ionisasi Elektrolit Kuat
Larutan yang dapat memberikan lampu terang, gelembung gasnya banyak, maka laurtan ini merupakan elektrolit kuat. Umumnya elektrolit kuat adalah larutan garam. Dalam proses ionisasinya, elektrolit kuat menghasilkan banyak ion maka  = 1 (terurai senyawa), pada persamaan reaksi ionisasi elektrolit kuat ditandai dengan anak panah satu arah ke kanan.
Perlu diketahui pula elektrolit kuat ada beberapa dari asam dan basa.
Contoh :
NaCl (aq)
KI (aq)
Ca(NO3)2(g) Na+(aq) + Cl-(aq)
K+(aq) + I-(aq)
Ca2+(aq) + NO3-(aq)
Di bawah ini diberikan kation dan anion yang dapat membentuk elektrolit kuat.
Kation : Na+, L+, K+, Mg2+, Ca2+, Sr2+, Ba2+, NH4+
Anion : Cl-, Br-, I-, SO42-, NO3-, ClO4-, HSO4-, CO32-, HCO32-
Cobalah Anda buatkan 5 macam garam lengkap dengan reaksi ionisasinya sesuai dengan kation dan anion pembentuknya seperti di bawah ini.
No. Kation dan Anion Rumus Senyawa Reaksi Kimia
1.
2.
3.
4.
5.
Mg2+Br-
Na+SO42-
Ca2+ClO4-
Ba2+NO32-
NH4+Cl-
Jawaban :
Mg2+
Br-
MgBr2
Mg2+ + 2Br-
Na+
SO42-
Na2SO4
2Na+ + SO42-
Ca2+
ClO4-
Ca(ClO4)4
Ca2+ + 2ClO4-
Ba2+
NO32-
Ba(NO3)2
Ba2+ + 2NO3-
NH4+
Cl-
NH4Cl
NH4+ + Cl-
1.6 Reaksi Ionisasi Elektrolit Lemah
Larutan yang dapat memberikan nyala redup ataupun tidak menyala, tetapi masih terdapat gelembung gas pada elektrodanya maka larutan ini merupakan elekrtolit lemah. Daya hantarnya buruh dan memiliki á (derajat ionisasi) kecil, karena sedikit larutan yang terurai (terionisasi). Makin sedikit yang terionisasi, makin lemah elektrolit tersebut. Dalam persamaan reaksi ionisasi elektrolit lemah ditandai dengan panah dua arah (bolak-balik) artinya tidak semua molekul terurai (ionisasi tidak sempurna)
Contoh:
CH3COOH(aq)
NH4OH(g) CH3COO-(aq) + H+(aq)
NH4+(aq) + OH-(aq)
Di bawah ini diberikan beberapa larutaan elektrolit lemah, tuliskanlah reaksi ionisasinya.
a. H2S(aq)
b. H3PO4 (aq)
c. HF(g) d. HCOOH(aq)
e. HCN(aq)
Jawaban :
a. H2S(aq)
b. H3PO4 (aq)
c. HF(g)
d. HCOOH(aq)
e. HCN(aq) 2H+(aq) + S2-(aq)
3H+(aq) + PO43-(aq)
H+(aq) + F-(aq)
H+(aq) + HCOO+(aq)
H+(aq) + CN-(aq)
2. Cara Larutan Elektrolit Menghantarkan Arus Listrik
Pada tahun 1884, Svante Arrhenius, ahli kimia terkenal dari Swedia mengemukakan teori elektrolit yang sampai saat ini teori tersebut tetap bertahan padahal ia hampir saja tidak diberikan gelar doktornya di Universitas Upsala, Swedia, karena mengungkapkan teori ini. Menurut Arrhenius, larutan elektrolit dalam air terdisosiasi ke dalam partikel-partikel bermuatan listrik positif dan negatif yang disebut ion (ion positif dan ion negatif) Jumlah muatan ion positif akan sama dengan jumlah muatan ion negatif, sehingga muatan ion-ion dalam larutan netral. Ion-ion inilah yang bertugas mengahantarkan arus listrik.
” Larutan elektrolit dapat menghantarkan listrik karena mengandung ion-ion yang dapat bergerak bebas. Ion-ion itulah yang menghantarkan arus listrik melalui larutan”.
Larutan yang dapat menghantarkan arus listrik disebut larutan elektrolit.
Larutan ini memberikan gejala berupa menyalanya lampu atau timbulnya gelembung gas dalam larutan.
Larutan elektrolit mengandung partikel-partikel yang bermuatan (kation dan anion). Berdasarkan percobaan yang dilakukan oleh Michael Faraday, diketahui bahwa jika arus listrik dialirkan ke dalam larutan elektrolit akan terjadi proses elektrolisis yang menghasilkan gas. Gelembung gas ini terbentuk karena ion positif mengalami reaksi reduksi dan ion negatif mengalami oksidasi. Contoh, pada laruutan HCl terjadi reaksi elektrolisis yang menghasilkan gas hidrogen sebagai berikut.
HCl(aq)→ H+(aq) + Cl-(aq)
Reaksi reduksi : 2H+(aq) + 2e- → H2(g)
Reaksi oksidasi : 2Cl-(aq) → Cl2(g) + 2e-
Larutan elektrolit terdiri dari larutan elektrolit kuat contohnya HCl, H2SO4, dan larutan elektrolit lemah contohnya CH3COOH, NH3, H2S.
Larutan elektrolit dapat bersumber dari senyawa ion (senyawa yang mempunyai ikatan ion) atau senyawa kovalen polar (senyawa yang mempunyai ikatan kovalen polar)
Zat elektrolit yang terurai dalam air menjadi ion-ion :
HaCl (s) Na+ (aq) + Cl- (aq)
HCl (g) H+ (aq) + Cl- (aq)
H2SO4 (aq) 2H+ (aq) + SO4 2- (aq)
HaOH (s) Na+ (aq) + OH- (aq)
CH3COOH (l) CH3COO- (aq) + H+ (aq)
Zat non elektrolit yang tidak terurai menjadi ion-ion, tapi tetap berupa molekul
C2H5OH (l) C2H5OH (aq)
CO(NH2)2 (s) CO(NH2)2 (aq)
Reaksi peruraian disebut elektrolisis
Reaksi reduksi : pada katode, electron ditangkap oleh ion
Reaksi oksidasi : pada anode, ion akan melepaskan electron
Berdasarkan pelepasan dan pengikatan oksigen
Reaksi oksidasi : reaksi pengikatan oksigen
Contoh : C6H1206 CO2 + 6H2O
3S + 2KClO3 2KCl + 3SO2
Reaksi Reduksi :Reaksi pelepasan oksigen
Contoh : Fe2O3 + 3CO 2Fe2 + 3CO2
CuO + H2 Cu + H2O
3. Hubungan Keelektrolitan dengan ikatan kimia
3.1 Senyawa Ion
Sebagai contoh dari kegiatan percobaan yang tergolong larutan elektrolit yang berikatan ion adalah garam dapur.
Dapatkah Anda membedakan daya hantar listrik untuk garam pada saat kristal, lelehan dan larutan?
Cobalah perhatikan uraian berikut.
NaCl adalah senyawa ion, jika dalam keadaan kristal sudah sebagai ion-ion, tetapi ion-ion itu terikat satu sama lain dengan rapat dan kuat, sehingga tidak bebas bergerak. Jadi dalam keadaan kristal (padatan) senyawa ion tidak dapat menghantarkan listrik, tetapi jika garam yang berikatan ion tersebut dalam keadaan lelehan atau larutan, maka ion-ionnya akan bergerak bebas, sehingga dapat menghantarkan listrik.
Pada saat senyawa NaCl dilarutkan dalam air, ion-ion yang tersusun rapat dan terikat akan tertarik oleh molekul-molekul air dan air akan menyusup di sela-sela butir-butir ion tersebut (proses hidasi) yang akhirnya akan terlepas satu sama lain dan bergerak bebas dalam larutan.
Yang termasuk ke dalam senyawa ion adalah senyawa basa dan garam.
NaCl (s) + air Na+ (aq) + Cl-(aq)
Gambar 5. Proses pelarutan padatan kristal
3.2 Senyawa Kovalen
Senyawa kovalen terbagi menjadi senyawa kovalen non polar misalnya : F2, Cl2, Br2, I2, CH4 dan kovalen polar misalnya : HCl, HBr, HI, NH3.
Dari hasil percobaan, hanya senyawa yang berikatan kovalen polarlah yang dapat menghantarkan arus listrik. Bagaimanakah hal ini dapat dijelaskan?
Kalau kita perhatikan, bahwa HCl merupakan senyawa kovalen di atom bersifat polar, pasangan elektron ikatan tertarik ke atom Cl yang lebih elektro negatif dibanding dengan atom H. Sehingga pada HCl, atom H lebih positif dan atom Cl lebih negatif.
Struktur lewis:
Reaksi ionisasi nya adalah sebagai berikut : HCL(aq) H+(aq) + Cl-(aq)
Jadi walaupun molekul HCl bukan senyawa ion, jika dilarutkan ke dalam air maka larutannya dapat menghantarkan arus listrik karena menghasilkan ion-ion yang bergerak bebas.
HCl(g) + H2O(l)
HCl(g)
HCl(g) H3O+(aq) + Cl-(aq)
H3O+ + Cl-(g)
H+(aq) + Cl-(aq)
Apakah HCl dalam keadaan murni dapat menghantarkan arus listrik? Karena HCl dalam keadaan murni berupa molekul-molekul tidak mengandung ion-ion, maka cairan HCl murni tidak dapat menghantarkan arus listrik.
4. Kesimpulan
Dari penjelasan di atas maka dapat disimpulkan bahwa suatu larutan akan dapat menghantarkan listrik apabila lrutan tersebut memiliki ion-ion yang bergerak bebas, tapi apabila ion-ion berbentuk rapat dan kuat, sehingga tidak dapat bergerak bebas maka larutan tersebut tidak dapat menghantarkan listrik.

 kimx07_4







sumber :
http://arnold040993.wordpress.com/2009/02/17/20/










Reaksi kimia

Reaksi kimia adalah suatu proses alam yang selalu menghasilkan antarubahan senyawa kimia.[1] Senyawa ataupun senyawa-senyawa awal yang terlibat dalam reaksi disebut sebagai reaktan. Reaksi kimia biasanya dikarakterisasikan dengan perubahan kimiawi, dan akan menghasilkan satu atau lebih produk yang biasanya memiliki ciri-ciri yang berbeda dari reaktan. Secara klasik, reaksi kimia melibatkan perubahan yang melibatkan pergerakan elektron dalam pembentukan dan pemutusan ikatan kimia, walaupun pada dasarnya konsep umum reaksi kimia juga dapat diterapkan pada transformasi partikel-partikel elementer seperti pada reaksi nuklir.
Reaksi-reaksi kimia yang berbeda digunakan bersama dalam sintesis kimia untuk menghasilkan produk senyawa yang diinginkan. Dalam biokimia, sederet reaksi kimia yang dikatalisis oleh enzim membentuk lintasan metabolisme, di mana sintesis dan dekomposisi yang biasanya tidak mungkin terjadi di dalam sel dilakukan.

Jenis-jenis reaksi

Beragamnya reaksi-reaksi kimia dan pendekatan-pendekatan yang dilakukan dalam mempelajarinya mengakibatkan banyaknya cara untuk mengklasifikasikan reaksi-reaksi tersebut, yang sering kali tumpang tindih. Di bawah ini adalah contoh-contoh klasifikasi reaksi kimia yang biasanya digunakan.
  • Isomerisasi, yang mana senyawa kimia menjalani penataan ulang struktur tanpa perubahan pada kompoasisi atomnya
  • Kombinasi langsung atau sintesis, yang mana dua atau lebih unsur atau senyawa kimia bersatu membentuk produk kompleks:
N2 + 3 H2 → 2 NH3
  • Dekomposisi kimiawi atau analisis, yang mana suatu senyawa diurai menjadi senyawa yang lebih kecil:
2 H2O → 2 H2 + O2
2 Na(s) + 2 HCl(aq) → 2 NaCl(aq) + H2(g)
  • Metatesis atau Reaksi penggantian ganda, yang mana dua senyawa saling berganti ion atau ikatan untuk membentuk senyawa yang berbeda:
NaCl(aq) + AgNO3(aq) → NaNO3(aq) + AgCl(s)
  • Reaksi asam basa, secara luas merupakan reaksi antara asam dengan basa. Ia memiliki berbagai definisi tergantung pada konsep asam basa yang digunakan. Beberapa definisi yang paling umum adalah:
    • Definisi Arrhenius: asam berdisosiasi dalam air melepaskan ion H3O+; basa berdisosiasi dalam air melepaskan ion OH-.
    • Definisi Brønsted-Lowry: Asam adalah pendonor proton (H+) donors; basa adalah penerima (akseptor) proton. Melingkupi definisi Arrhenius.
    • Definisi Lewis: Asam adalah akseptor pasangan elektron; basa adalah pendonor pasangan elektron. Definisi ini melingkupi definisi Brønsted-Lowry.
  • Reaksi redoks, yang mana terjadi perubahan pada bilangan oksidasi atom senyawa yang bereaksi. Reaksi ini dapat diinterpretasikan sebagai transfer elektron. Contoh reaksi redoks adalah:
2 S2O32−(aq) + I2(aq) → S4O62−(aq) + 2 I(aq)
Yang mana I2 direduksi menjadi I- dan S2O32- (anion tiosulfat) dioksidasi menjadi S4O62-.
  • Pembakaran, adalah sejenis reaksi redoks yang mana bahan-bahan yang dapat terbakar bergabung dengan unsur-unsur oksidator, biasanya oksigen, untuk menghasilkan panas dan membentuk produk yang teroksidasi. Istilah pembakaran biasanya digunakan untuk merujuk hanya pada oksidasi skala besar pada keseluruhan molekul. Oksidasi terkontrol hanya pada satu gugus fungsi tunggal tidak termasuk dalam proses pembakaran.
C10H8+ 12 O2 → 10 CO2 + 4 H2O
CH2S + 6 F2CF4 + 2 HF + SF6
  • Disproporsionasi, dengan satu reaktan membentuk dua jenis produk yang berbeda hanya pada keadaan oksidasinya.
2 Sn2+ → Sn + Sn4+

Kinetika kimia

Laju reaksi suatu reaksi kimia merupakan pengukuran bagaimana konsentrasi ataupun tekanan zat-zat yang terlibat dalam reaksi berubah seiring dengan berjalannya waktu. Analisis laju reaksi sangatlah penting dan memiliki banyak kegunaan, misalnya dalam teknik kimia dan kajian kesetimbangan kimia. Laju reaksi secara mendasar tergantung pada:
  • Konsentrasi reaktan, yang biasanya membuat reaksi berjalan dengan lebih cepat apabila konsentrasinya dinaikkan. Hal ini diakibatkan karena peningkatan pertumbukan atom per satuan waktu,
  • Luas permukaan yang tersedia bagi reaktan untuk saling berinteraksi, terutama reaktan padat dalam sistem heterogen. Luas permukaan yang besar akan meningkatkan laju reaksi.
  • Tekanan, dengan meningkatkan tekanan, kita menurunkan volume antar molekul sehingga akan meningkatkan frekuensi tumbukan molekul.
  • Energi aktivasi, yang didefinisikan sebagai jumlah energi yang diperlukan untuk membuat reaksi bermulai dan berjalan secara spontan. Energi aktivasi yang lebih tinggi mengimplikasikan bahwa reaktan memerlukan lebih banyak energi untuk memulai reaksi daripada reaksi yang berenergi aktivasi lebih rendah.
  • Temperatur, yang meningkatkan laju reaksi apabila dinaikkan, hal ini dikarenakan temperatur yang tinggi meningkatkan energi molekul, sehingga meningkatkan tumbukan antar molekul per satuan waktu.
  • Keberadaan ataupun ketiadaan katalis. Katalis adalah zat yang mengubah lintasan (mekanisme) suatu reaksi dan akan meningkatkan laju reaksi dengan menurunkan energi aktivasi yang diperlukan agar reaksi dapat berjalan. Katalis tidak dikonsumsi ataupun berubah selama reaksi, sehingga ia dapat digunakan kembali.
  • Untuk beberapa reaksi, keberadaan radiasi elektromagnetik, utamanya ultraviolet, diperlukan untuk memutuskan ikatan yang diperlukan agar reaksi dapat bermulai. Hal ini utamanya terjadi pada reaksi yang melibatkan radikal.
Laju reaksi berhubungan dengan konsentrasi zat-zat yang terlibat dalam reaksi. Hubungan ini ditentukan oleh persamaan laju tiap-tiap reaksi. Perlu diperhatikan bahwa beberapa reaksi memiliki kelajuan yang tidak tergantung pada konsentrasi reaksi. Hal ini disebut sebagai reaksi orde nol.

sumber :
http://id.wikipedia.org/wiki/Reaksi_kimia

reaksi oksidasi dan reduksi (Redoks)

Redoks (singkatan dari reaksi reduksi/oksidasi) adalah istilah yang menjelaskan berubahnya bilangan oksidasi (keadaan oksidasi) atom-atom dalam sebuah reaksi kimia.
Hal ini dapat berupa proses redoks yang sederhana seperti oksidasi karbon yang menghasilkan karbon dioksida, atau reduksi karbon oleh hidrogen menghasilkan metana(CH4), ataupun ia dapat berupa proses yang kompleks seperti oksidasi gula pada tubuh manusia melalui rentetan transfer elektron yang rumit.
Istilah redoks berasal dari dua konsep, yaitu reduksi dan oksidasi. Ia dapat dijelaskan dengan mudah sebagai berikut:
Walaupun cukup tepat untuk digunakan dalam berbagai tujuan, penjelasan di atas tidaklah persis benar. Oksidasi dan reduksi tepatnya merujuk pada perubahan bilangan oksidasi karena transfer elektron yang sebenarnya tidak akan selalu terjadi. Sehingga oksidasi lebih baik didefinisikan sebagai peningkatan bilangan oksidasi, dan reduksi sebagai penurunan bilangan oksidasi. Dalam prakteknya, transfer elektron akan selalu mengubah bilangan oksidasi, namun terdapat banyak reaksi yang diklasifikasikan sebagai "redoks" walaupun tidak ada transfer elektron dalam reaksi tersebut (misalnya yang melibatkan ikatan kovalen).
Reaksi non-redoks yang tidak melibatkan perubahan muatan formal (formal charge) dikenal sebagai reaksi metatesis.

Contoh reaksi redoks

Salah satu contoh reaksi redoks adalah antara hidrogen dan fluorin:
 \mathrm{H}_{2} + \mathrm{F}_{2} \longrightarrow 2\mathrm {HF}
Kita dapat menulis keseluruhan reaksi ini sebagai dua reaksi setengah: reaksi oksidasi
 \mathrm{H}_{2} \longrightarrow 2\mathrm{H}^{+} + 2e^-
dan reaksi reduksi
 \mathrm{F}_{2} + 2e^- \longrightarrow 2\mathrm{F}^{-}
Penganalisaan masing-masing reaksi setengah akan menjadikan keseluruhan proses kimia lebih jelas. Karena tidak terdapat perbuahan total muatan selama reaksi redoks, jumlah elektron yang berlebihan pada reaksi oksidasi haruslah sama dengan jumlah yang dikonsumsi pada reaksi reduksi.
Unsur-unsur, bahkan dalam bentuk molekul, sering kali memiliki bilangan oksidasi nol. Pada reaksi di atas, hidrogen teroksidasi dari bilangan oksidasi 0 menjadi +1, sedangkan fluorin tereduksi dari bilangan oksidasi 0 menjadi -1.
Ketika reaksi oksidasi dan reduksi digabungkan, elektron-elektron yang terlibat akan saling mengurangi:
\frac{\begin{array}{rcl}
\mathrm{H}_{2} & \longrightarrow & 2\mathrm{H}^{+} + 2e^{-}\\
\mathrm{F}_{2} + 2e^{-} & \longrightarrow & 2\mathrm{F}^{-}
\end{array}}{\begin{array}{rcl}
\mathrm{H}_{2} + \mathrm{F}_{2} & \longrightarrow & 2\mathrm{H}^{+} + 2\mathrm{F}^{-}
\end{array}}
Dan ion-ion akan bergabung membentuk hidrogen fluorida:
\mathrm{H}_{2} + \mathrm{F}_{2}\, \ \longrightarrow \ 2\mathrm{H}^{+} + 2\mathrm{F}^{-}\ \longrightarrow \ 2\mathrm{HF}

Reaksi penggantian

Redoks terjadi pada reaksi penggantian tunggal atau reaksi substitusi. Komponen redoks dalam tipe reaksi ini ada pada perubahan keadaan oksidasi (muatan) pada atom-atom tertentu, dan bukanlah pada pergantian atom dalam senyawa.
Sebagai contoh, reaksi antara larutan besi dan tembaga(II) sulfat:
 \mathrm{Fe} + \mathrm{CuSO}_{4} \longrightarrow \mathrm{FeSO}_{4} + \mathrm{Cu}
Persamaan ion dari reaksi ini adalah:
\mathrm{Fe} + \mathrm{Cu}^{2+} \longrightarrow \mathrm{Fe}^{2+} + \mathrm{Cu}
Terlihat bahwa besi teroksidasi:
\mathrm{Fe} \longrightarrow \mathrm{Fe}^{2+} + 2{e}^{-}
dan tembaga tereduksi:
\mathrm{Cu}^{2+} + 2{e}^{-} \longrightarrow \mathrm{Cu}

Contoh-contoh lainnya

  • Besi(II) teroksidasi menjadi besi(III)
\mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe}^{3+} + {e}^{-}
H2O2 + 2 e → 2 OH
Persamaan keseluruhan reaksi di atas adalah:
2Fe2+ + H2O2 + 2H+ → 2Fe3+ + 2H2O
2NO3 + 10e + 12 H+ → N2 + 6H2O
  • Besi akan teroksidasi menjadi besi(III) oksida dan oksigen akan tereduksi membentuk besi(III) oksida (umumnya dikenal sebagai perkaratan):
4Fe + 3O2 → 2 Fe2O3

Media asam

Pada media asam, ion H+ dan air ditambahkan pada reaksi setengah untuk menyeimbangkan keseluruhan reaksi. Sebagai contoh, ketika mangan(II) bereaksi dengan natrium bismutat:
\mbox{Reaksi tidak seimbang: }\mbox{Mn}^{2+}(aq) + \mbox{NaBiO}_3(s)\rightarrow\mbox{Bi}^{3+}(aq) + \mbox{MnO}_4^{-}(aq)\,
\mbox{Oksidasi: }\mbox{4H}_2\mbox{O}(l)+\mbox{Mn}^{2+}(aq)\rightarrow\mbox{MnO}_4^{-}(aq) + \mbox{8H}^{+}(aq)+\mbox{5e}^{-}\,
\mbox{Reduksi: }\mbox{2e}^{-}+ \mbox{6H}^{+}(aq) + \mbox{BiO}_3^{-}(s)\rightarrow\mbox{Bi}^{3+}(aq) + \mbox{3H}_2\mbox{O}(l)\,
Reaksi ini diseimbangkan dengan mengatur reaksi sedemikian rupa sehingga dua setengah reaksi tersebut melibatkan jumlah elektron yang sama (yakni mengalikan reaksi oksidasi dengan jumlah elektron pada langkah reduksi, demikian juga sebaliknya).
\mbox{8H}_2\mbox{O}(l)+\mbox{2Mn}^{2+}(aq)\rightarrow\mbox{2MnO}_4^{-}(aq) + \mbox{16H}^{+}(aq)+\mbox{10e}^{-}\,
\mbox{10e}^{-}+ \mbox{30H}^{+}(aq) + \mbox{5BiO}_3^{-}(s)\rightarrow\mbox{5Bi}^{3+}(aq) + \mbox{15H}_2\mbox{O}(l)\,
Reaksi diseimbangkan:
\mbox{14H}^{+}(aq) + \mbox{2Mn}^{2+}(aq)+ \mbox{5NaBiO}_3(s)\rightarrow\mbox{7H}_2\mbox{O}(l) + \mbox{2MnO}_4^{-}(aq)+\mbox{5Bi}^{3+}(aq)+\mbox{5Na}^{+}(aq)\,
Hal yang sama juga berlaku untuk sel bahan bakar propana di bawah kondisi asam:
\mbox{Reaksi tidak seimbang: }\mbox{C}_{3}\mbox{H}_{8}+\mbox{O}_{2}\rightarrow\mbox{CO}_{2}+\mbox{H}_{2}\mbox{O}\,
\mbox{Reduksi: }\mbox{4H}^{+} + \mbox{O}_{2}+ \mbox{4e}^{-}\rightarrow\mbox{2H}_{2}\mbox{O}\,
\mbox{Oksidasi: }\mbox{6H}_{2}\mbox{O}+\mbox{C}_{3}\mbox{H}_{8}\rightarrow\mbox{3CO}_{2}+\mbox{20e}^{-}+\mbox{20H}^{+}\,
Dengan menyeimbangkan jumlah elektron yang terlibat:
\mbox{20H}^{+}+\mbox{5O}_{2}+\mbox{20e}^{-}\rightarrow\mbox{10H}_{2}\mbox{O}\,
\mbox{6H}_{2}\mbox{O}+\mbox{C}_{3}\mbox{H}_{8}\rightarrow\mbox{3CO}_{2}+\mbox{20e}^{-}+\mbox{20H}^{+}\,
Persamaan diseimbangkan:
\mbox{C}_{3}\mbox{H}_{8}+\mbox{5O}_{2}\rightarrow\mbox{3CO}_{2}+\mbox{4H}_{2}\mbox{O}\,

Media basa

Pada media basa, ion OH- dan air ditambahkan ke reaksi setengah untuk menyeimbangkan keseluruhan reaksi.Sebagai contoh, reaksi antara kalium permanganat dan natrium sulfit:
\mbox{Reaksi takseimbang: }\mbox{KMnO}_{4}+\mbox{Na}_{2}\mbox{SO}_3+\mbox{H}_2\mbox{O}\rightarrow\mbox{MnO}_{2}+\mbox{Na}_{2}\mbox{SO}_{4}+\mbox{KOH}\,
\mbox{Reduksi: }\mbox{3e}^{-}+\mbox{2H}_{2}\mbox{O}+\mbox{MnO}_{4}^{-}\rightarrow\mbox{MnO}_{2}+\mbox{4OH}^{-}\,
\mbox{Oksidasi: }\mbox{2OH}^{-}+\mbox{SO}^{2-}_{3}\rightarrow\mbox{SO}^{2-}_{4}+\mbox{H}_{2}\mbox{O}+\mbox{2e}^{-}\,
Dengan menyeimbangkan jumlah elektron pada kedua reaksi setengah di atas:
\mbox{6e}^{-}+\mbox{4H}_{2}\mbox{O}+\mbox{2MnO}_{4}^{-}\rightarrow\mbox{2MnO}_{2}+\mbox{8OH}^{-}\,
\mbox{6OH}^{-}+\mbox{3SO}^{2-}_{3}\rightarrow\mbox{3SO}^{2-}_{4}+\mbox{3H}_{2}\mbox{O}+\mbox{6e}^{-}\,
Persamaan diseimbangkan:

 \mbox{2KMnO}_{4}+\mbox{3Na}_{2}\mbox{SO}_3+\mbox{H}_2\mbox{O}\rightarrow\mbox{2MnO}_{2}+\mbox{3Na}_{2}\mbox{SO}_{4}+\mbox{2KOH}\,


 sumber :
http://id.wikipedia.org/wiki/Redoks

Ikatan kimia

Ikatan kimia adalah sebuah proses fisika yang bertanggung jawab dalam interaksi gaya tarik menarik antara dua atom atau molekul yang menyebabkan suatu senyawa diatomik atau poliatomik menjadi stabil. Penjelasan mengenai gaya tarik menarik ini sangatlah rumit dan dijelaskan oleh elektrodinamika kuantum. Dalam prakteknya, para kimiawan biasanya bergantung pada teori kuantum atau penjelasan kualitatif yang kurang kaku (namun lebih mudah untuk dijelaskan) dalam menjelaskan ikatan kimia. Secara umum, ikatan kimia yang kuat diasosiasikan dengan transfer elektron antara dua atom yang berpartisipasi. Ikatan kimia menjaga molekul-molekul, kristal, dan gas-gas diatomik untuk tetap bersama. Selain itu ikatan kimia juga menentukan struktur suatu zat.
Kekuatan ikatan-ikatan kimia sangatlah bervariasi. Pada umumnya, ikatan kovalen dan ikatan ion dianggap sebagai ikatan "kuat", sedangkan ikatan hidrogen dan ikatan van der Waals dianggap sebagai ikatan "lemah". Hal yang perlu diperhatikan adalah bahwa ikatan "lemah" yang paling kuat dapat lebih kuat daripada ikatan "kuat" yang paling lemah.

Ikatan Kovalen = Homopolar

Ikatan kovalen terjadi karena adanya pemakaian bersama elektron dari atom-atom yang membentuk ikatan. Pada umumnya ikatan kovalen terjadi antara atom-atom bukan logam yang mempunyai perbedaan elektronegativitas rendah atau nol. Seperti misalnya : H 2, CH 4, Cl 2, N 2, C 6 H 6, HCl dan sebagainya.
IKATAN KOVALEN TERBAGI ATAS
1. IKATAN KOVALEN POLAR
om-atom pembentuknya mempunyai gaya tarik yang tidak sama terhadap pasangan elektron
persekutuannya. Hal ini terjadi karena beda keelektronegatifan kedua atomnya. Elektron persekutuan akan
bergeser ke arah atom yang lebih elektronegatif akibatnya terjadi pemisahan kutub positif dan negatif.


Dalam senyawa HCl ini, Cl mempunyai keelektronegatifan yang lebih besar dari H. sehingga pasangan elektron lebih tertarik ke arah Cl, akibatnya H relatif lebih elektropositif sedangkan Cl relatif menjadi elektronegatif.
Pemisahan muatan ini menjadikan molekul itu bersifat polar dan memiliki "momen dipol" sebesar:
T = n . l
dimana :
T = momen dipol
n = kelebihan muatan pada masing-masing atom
l = jarak antara kedua inti atom

2. IKATAN KOVALEN NON POLAR
Titik muatan negatif elektron persekutuan berhimpit, sehingga pada molekul pembentukuya tidak terjadi momen dipol, dengan perkataan lain bahwa elektron persekutuan mendapat gaya tarik yang sama.
Contoh:
k edua atom H mempunyai harga keelektronegatifan yang sama.

Karena arah tarikan simetris, maka titik muatan negatif elektron persekutuan berhimpit.
Contoh lain adalah senyawa CO 2, O 2, Br 2 dan lain-lain


3). Ikatan Kovalen Koordinasi/Koordinat/Dativ/Semipolar
  • Adalah ikatan yang terbentuk dengan cara penggunaan bersama pasangan elektron yang berasal dari salah 1 atom yang berikatan [Pasangan Elektron Bebas (PEB)], sedangkan atom yang lain hanya menerima pasangan elektron yang digunakan bersama.
  • Pasangan elektron ikatan (PEI) yang menyatakan ikatan dativ digambarkan dengan tanda anak panah kecil yang arahnya dari atom donor menuju akseptor pasangan elektron.


4). Ikatan Logam
v Adalah ikatan yang terbentuk akibat adanya gaya tarik-menarik yang terjadi antara muatan positif dari ion-ion logam dengan muatan negatif dari elektron-elektron yang bebas bergerak.
v Atom-atom logam dapat diibaratkan seperti bola pingpong yang terjejal rapat 1 sama lain.
v Atom logam mempunyai sedikit elektron valensi, sehingga sangat mudah untuk dilepaskan dan membentuk ion positif.
v Maka dari itu kulit terluar atom logam relatif longgar (terdapat banyak tempat kosong) sehingga elektron dapat berpindah dari 1 atom ke atom lain.
v Mobilitas elektron dalam logam sedemikian bebas, sehingga elektron valensi logam mengalami delokalisasi yaitu suatu keadaan dimana elektron valensi tersebut tidak tetap posisinya pada 1 atom, tetapi senantiasa berpindah-pindah dari 1 atom ke atom lain.
v Struktur logam menyebabkan sifat-sifat khas logam yaitu :
a). berupa zat padat pada suhu kamar, akibat adanya gaya tarik-menarik yang cukup kuat antara elektron valensi (dalam awan elektron) dengan ion positif logam.
b). dapat ditempa (tidak rapuh), dapat dibengkokkan dan dapat direntangkan menjadi kawat . Hal ini akibat kuatnya ikatan logam sehingga atom-atom logam hanya bergeser sedangkan ikatannya tidak terputus.
c). penghantar / konduktor listrik yang baik, akibat adanya elektron valensi yang dapat bergerak bebas dan berpindah-pindah. Hal ini terjadi karena sebenarnya aliran listrik merupakan aliran elektron.

Polarisasi Ikatan Kovalen
* Suatu ikatan kovalen disebut polar, jika pasangan elektron ikatan (PEI) tertarik lebih kuat ke salah 1 atom.
Contoh 1 :
Molekul HCl
* Meskipun atom H dan Cl sama-sama menarik pasangan elektron, tetapi keelektronegatifan Cl lebih besar daripada atom H.
* Akibatnya atom Cl menarik pasangan elektron ikatan (PEI) lebih kuat daripada atom H sehingga letak PEI lebih dekat ke arah Cl (akibatnya terjadi semacam kutub dalam molekul HCl).

Jadi, kepolaran suatu ikatan kovalen disebabkan oleh adanya perbedaan keelektronegatifan antara atom-atom yang berikatan.
Sebaliknya, suatu ikatan kovalen dikatakan non polar (tidak berkutub), jika PEI tertarik sama kuat ke semua atom.


Momen Dipol ( µ )
Adalah suatu besaran yang digunakan untuk menyatakan kepolaran suatu ikatan kovalen.
Dirumuskan :
µ = Q x r ; 1 D = 3,33 x 10 -30 C.m
keterangan :
µ = momen dipol, satuannya debye (D)
Q = selisih muatan, satuannya coulomb (C)
r = jarak antara muatan positif dengan muatan negatif, satuannya meter (m)
Perbedaan antara Senyawa Ion dengan Senyawa Kovalen
No Sifat Senyawa Ion Senyawa Kovalen
1 Titik didih Tinggi Rendah
2 Titik leleh Tinggi Rendah
3 Wujud Padat pada suhu kamar
Padat,cair,gas pada suhu kamar
4 Daya hantar listrik Padat = isolator
Lelehan = konduktor
Larutan = konduktor
Padat = isolator
Lelehan = isolator
Larutan = ada yang konduktor
5 Kelarutan dalam air Umumnya larut Umumnya tidak larut
6 Kelarutan dalam trikloroetana (CHCl 3 ) Tidak larut Larut


Pengecualian dan Kegagalan Aturan Oktet
1). Pengecualian Aturan Oktet
a) Senyawa yang tidak mencapai aturan oktet
Meliputi senyawa kovalen biner sederhana dari Be, B dan Al yaitu atom-atom yang elektron valensinya kurang dari 4.
Contoh : BeCl 2, BCl 3 dan AlBr 3
b) Senyawa dengan jumlah elektron valensi ganjil
Contohnya : NO 2 mempunyai jumlah elektron valensi (5 + 6 + 6) = 17
c) Senyawa dengan oktet berkembang
Unsur-unsur periode 3 atau lebih dapat membentuk senyawa yang melampaui aturan oktet / lebih dari 8 elektron pada kulit terluar (karena kulit terluarnya M, N dst dapat menampung 18 elektron atau lebih).
Contohnya : PCl 5, SF 6, ClF 3, IF 7 dan SbCl 5

2). Kegagalan Aturan Oktet
Aturan oktet gagal meramalkan rumus kimia senyawa dari unsur transisi maupun post transisi.
Contoh :
ü atom Sn mempunyai 4 elektron valensi tetapi senyawanya lebih banyak dengan tingkat oksidasi +2
ü atom Bi mempunyai 5 elektron valensi tetapi senyawanya lebih banyak dengan tingkat oksidasi +1 dan +3
Penyimpangan dari Aturan Oktet dapat berupa :
1) Tidak mencapai oktet
2) Melampaui oktet (oktet berkembang)

Penulisan Struktur Lewis
Langkah-langkahnya :
1) Semua elektron valensi harus muncul dalam struktur Lewis
2) Semua elektron dalam struktur Lewis umumnya berpasangan
3) Semua atom umumnya mencapai konfigurasi oktet (khusus untuk H, duplet)
4) Kadang-kadang terdapat ikatan rangkap 2 atau 3 (umumnya ikatan rangkap 2 atau 3 hanya dibentuk oleh atom C, N, O, P dan S)
Langkah alternatif : (syarat utama : kerangka molekul / ion sudah diketahui)
1) Hitung jumlah elektron valensi dari semua atom dalam molekul / ion
2) Berikan masing-masing sepasang elektron untuk setiap ikatan
3) Sisa elektron digunakan untuk membuat semua atom terminal mencapai oktet
4) Tambahkan sisa elektron (jika masih ada), kepada atom pusat
5) Jika atom pusat belum oktet, tarik PEB dari atom terminal untuk membentuk ikatan rangkap dengan atom pusat

Resonansi
a. Suatu molekul atau ion tidak dapat dinyatakan hanya dengan satu struktur Lewis.
b. Kemungkinan-kemungkinan struktur Lewis yang ekivalen untuk suatu molekul atau ion disebut Struktur Resonansi .
c. Dalam molekul SO 2 terdapat 2 jenis ikatan yaitu 1 ikatan tunggal (S-O) dan 1 ikatan rangkap (S=O).
d. Berdasarkan konsep resonansi, kedua ikatan dalam molekul SO 2 adalah ekivalen.
e. Dalam molekul SO 2 itu, ikatan rangkap tidak tetap antara atom S dengan salah 1 dari 2 atom O dalam molekul itu, tetapi silih berganti.
f. Tidak satupun di antara ke-2 struktur di atas yang benar untuk SO 2, yang benar adalah gabungan atau hibrid dari ke-2 struktur resonansi tersebut.

Ikatan Ion = Elektrovalen = Heteropolar

Ikatan ion biasanya terjadi antara atom-atom yang mudah melepaskan elektron (logam-logam golongan utama) dengan atom-atom yang mudah menerima elektron (terutama golongan VIA den VIIA). Makin besar perbedaan elektronegativitas antara atom-atom yang membentuk ikatan, maka ikatan yang terbentuk makin bersifat ionik.
PADA UMUMNYA UNSUR-UNSUR YANG MUDAH MEMBENTUK IKATAN ION ADALAH
- IA « VIIA atau VIA
- IIA
« VIIA atau VIA
- Unsur transisi
« VIIA atau VIA
Contoh:
Na --> Na + e -
1s 2 2s 2 2p 6 3s 1 1s 2 2s 2 2p 6 (konfigurasi Ne)
Atom Cl (VIIA) mudah menerima elektron sehingga elektron yang dilepaskan oleh atom Na akan ditangkap oleh atom Cl.
Cl + e - --> Cl -
1s 2 2s 2 2p 6 3s 2 3p 5 1s 2 2s 2 2p 6 3s 2 3p 6 (konfigurasi Ar)
Antara ion-ion Na + dan Cl - terjadi gaya tarik menarik elektrostatik, sehingga membentuk senyawa ion Na + Cl - .
Contoh lain : CaCl 2, MgBr 2, BaO, FeS dan sebagainya.
SIFAT-SIFAT SENYAWA IONIK ANTARA LAIN

a. bersifat polar
b. larutannya dalam air menghantarkan arus listrik
c. titik lelehnya tinggi
d. lelehannya menghantarkan arus listrik
e. larut dalam pelarut-pelarut polar


sumber:
http://sahri.ohlog.com/ikatan-kimia.cat3087.html 

http://id.wikipedia.org/wiki/Ikatan_kimia 

Tabel periodik Unsur


Tabel periodik unsur-unsur kimia adalah tampilan unsur-unsur kimia dalam bentuk tabel. Unsur-unsur tersebut diatur berdasarkan struktur elektronnya sehingga sifat kimia unsur-unsur tersebut berubah-ubah secara teratur sepanjang tabel. Setiap unsur didaftarkan berdasarkan nomor atom dan lambang unsurnya.
Tabel periodik standar memberikan informasi dasar mengenai suatu unsur. Ada juga cara lain untuk menampilkan unsur-unsur kimia dengan memuat keterangan lebih atau dari persepektif yang berbeda.

Tabel periodik standar

Penjelasan struktur tabel periodik

Jumlah kulit elektron yang dimiliki sebuah atom menentukan periode atom tersebut. Setiap kulit memiliki beberapa subkulit, yang terisi menurut urutan berikut ini, seiring dengan bertambahnya nomor atom:
1s
2s 2p
3s 3p
4s 3d 4p
5s 4d 5p
6s 4f 5d 6p
7s 5f 6d 7p
8s 5g 6f 7d 8p
...
Berdasarkan hal inilah struktur tabel disusun. Karena elektron terluar menentukan sifat kimia suatu unsur, unsur-unsur yang segolongan umumnya mempunyai sifat kimia yang mirip. Unsur-unsur segolongan yang berdekatan mempunyai sifat fisika yang mirip, meskipun massa mereka jauh berbeda. Unsur-unsur seperiode yang berdekatan mempunyai massa yang hampir sama, tetapi sifat yang berbeda.
Sebagai contoh, dalam periode kedua, yang berdekatan dengan Nitrogen (N) adalah Karbon (C) dan Oksigen (O). Meskipun massa unsur-unsur tersebut hampir sama (massanya hanya selisih beberapa satuan massa atom), mereka mempunyai sifat yang jauh berbeda, sebagaimana bisa dilihat dengan melihat alotrop mereka: oksigen diatomik adalah gas yang dapat terbakar, nitrogen diatomik adalah gas yang tak dapat terbakar, dan karbon adalah zat padat yang dapat terbakar (ya, berlian pun dapat terbakar!).
Sebaliknya, yang berdekatan dengan unsur Klorin (Cl) di tabel periodik, dalam golongan Halogen, adalah Fluorin (F) dan Bromin (Br). Meskipun massa unsur-unsur tersebut jauh berbeda, alotropnya mempunyai sifat yang sangat mirip: Semuanya bersifat sangat korosif (yakni mudah bercampur dengan logam membentuk garam logam halida); klorin dan fluorin adalah gas, sementara bromin adalah cairan bertitik didih yang rendah; sedikitnya, klorin dan bromin sangat berwarna.

Klasifikasi

Golongan

Kolom dalam tabel periodik disebut golongan. Ada 18 golongan dalam tabel periodik baku. Unsur-unsur yang segolongan mempunyai konfigurasi elektron valensi yang mirip, sehingga mempunyai sifat yang mirip pula. Ada tiga sistem pemberian nomor golongan. Sistem pertama memakai angka Arab dan dua sistem lainnya memakai angka Romawi. Nama dengan angka Romawi adalah nama golongan yang asli tradisional. Nama dengan angka Arab adalah sistem tatanama baru yang disarankan oleh International Union of Pure and Applied Chemistry (IUPAC). Sistem penamaan tersebut dikembangkan untuk menggantikan kedua sistem lama yang menggunakan angka Romawi karena kedua sistem tersebut membingungkan, menggunakan satu nama untuk beberapa hal yang berbeda.
Golongan bisa dianggap sebagai cara yang paling penting dari mengklasifikasi unsur. Pada beberapa golongan, unsur-unsurnya ada yang sangat mirip sifatnya dan memiliki kecenderungan sifat yang jelas jika ditelusuri menurun di dalam kolom. Golongan-golongan ini sering diberi nama umum (tak sistematis) sebagai contoh: logam alkali, logam alkali tanah, halogen, khalkogen, dan gas mulia. Beberapa golongan lainnya dalam tabel tidak menampilkan sebanyak persamaan maupun kecenderungan sifat secara vertikal (sebagai contoh Kelompok 14 dan 15), golongan ini tidak memiliki nama umum.

Periode

Baris dalam tabel periodik disebut periode. Walaupun golongan adalah cara yang paling umum untuk mengklasifikasi unsur, ada beberapa bagian di tabel unsur yang kecenderungan sifatnya secara horisontal dan kesamaan sifatnya lebih penting dan mencolok daripada kecenderungan vertikal. Fenomena ini terjadi di blok-d (atau "logam transisi"), dan terutama blok-f, dimana lantinida dan aktinida menunjukan sifat berurutan yang sangat mencolok.

Periodisitas Sifat Kimia

Nilai utama dari tabel periodik adalah kemampuan untuk memprediksi sifat kimia dari sebuah unsur berdasarkan lokasi di tabel. Perlu dicatat bahwa sifat kimia berubah banyak jika bergerak secara vertikal di Kecenderungan Periodisitas dalam Golongan
Kecenderungan periodisas dari energi ionisasi
Teori struktur atom mekanika kuantum modern menjelaskan kecenderungan golongan dengan memproposisikan bahwa unsur dalam golongan yang sama memiliki konfigurasi elektron yang sama dalam kulit terluarnya, yang merupakan faktor terpenting penyebab sifat kimia yang mirip. Unsur-unsur dalam golongan yang sama juga menunjukkan pola jari-jari atom, energi ionisasi, dan elektronegativitas. Dari urutan atas ke bawah dalam golongan, jari-jari atom unsur bertambah besar. Karena lebih banyak susunan energi yang terisi, elektron valensi terletak lebih jauh dari inti. Dari urutan atas, setiap unsur memiliki energi ionisasi yang lebih rendah dari unsur sebelumnya karena lebih mudahnya sebuah elektron terlepas karena elektron terluarnya yang semakin jauh dari inti. Demikian pula, suatu golongan juga menampilkan penurunan elektronegativitas dari urutan atas ke bawah karena peningkatan jarak antara elektron valensi dan inti.

Kecenderungan Periodisasi Periode

Unsur-unsur dalam periode yang sama memiliki kecenderungan dalam jari-jari atom, energi ionisasi, afinitas elektron dan elektronegativitas. Dari kiri ke kanan, jari-jari atom biasanya menurun. Hal ini terjadi karena setiap unsur mendapat tambahan proton dan elektron yang menyebabkan elektron tertarik lebih dekat ke inti. Penurunan jari-jari atom ini juga menyebabkan meningkatnya energi ionisasi jika bergerak dari urutan kiri ke kanan. Semakin rapat terikatnya suatu unsur, semakin banyak energi yang diperlukan untuk melepaskan sebuah elektron. Demikian juga elektronegativitas, yang meningkat bersamaan dengan energi ionisasi karena tarikan oleh inti pada elektron. Afinitas elektron juga mempunyai kecenderungan, walau tidak semenyolok pada sebuah periode. Logam (bagian kiri dari perioda) pada umumnya memiliki afinitas elektron yang lebih rendah dibandingkan dengan unsur nonmetal (periode sebelah kanan), dengan pengecualian gas mulia.

Sejarah

http://id.wikipedia.org/wiki/Tabel_periodik

Tabel periodik pada mulanya diciptakan tanpa mengetahui struktur dalam atom: jika unsur-unsur diurutkan berdasarkan massa atom lalu dibuat grafik yang menggambarkan hubungan antara beberapa sifat tertentu dan massa atom unsur-unsur tersebut, akan terlihat suatu perulangan atau periodisitas sifat-sifat tadi sebagai fungsi dari massa atom. Orang pertama yang mengenali keteraturan tersebut adalah ahli kimia Jerman, yaitu Johann Wolfgang Döbereiner, yang pada tahun 1829 memperhatikan adanya beberapa triade unsur-unsur yang hampir sama.
Beberapa triade
Unsur Massa atom Kepadatan
Klorin 35,5 0,00156 g/cm3
Bromin 79,9 0,00312 g/cm3
Iodin 126,9 0,00495 g/cm3
 
Kalsium 40,1 1,55 g/cm3
Stronsium 87,6 2,6 g/cm3
Barium 137 3,5 g/cm3
Temuan ini kemudian diikuti oleh ahli kimia Inggris, yaitu John Alexander Reina Newlands, yang pada tahun 1865 memperhatikan bahwa unsur-unsur yang bersifat mirip ini berulang dalam interval delapan, yang ia persamakan dengan oktaf musik, meskipun hukum oktaf-nya diejek oleh rekan sejawatnya. Akhirnya, pada tahun 1869, ahli kimia Jerman Lothar Meyer dan ahli kimia Rusia Dmitry Ivanovich Mendeleyev hampir secara bersamaan mengembangkan tabel periodik pertama, mengurutkan unsur-unsur berdasarkan massanya. Akan tetapi, Mendeleyev meletakkan beberapa unsur menyimpang dari aturan urutan massa agar unsur-unsur tersebut cocok dengan sifat-sifat tetangganya dalam tabel, membetulkan kesalahan beberapa nilai massa atom, dan meramalkan keberadaan dan sifat-sifat beberapa unsur baru dalam sel-sel kosong di tabelnya. Keputusan Mendeleyev itu belakangan terbukti benar dengan ditemukannya struktur elektronik unsur-unsur pada akhir abad ke-19 dan awal abad ke-20.

sumber:

http://id.wikipedia.org/wiki/Tabel_periodik